五年級下冊數學知識點復習資料梳理
小學數學的學習需要不斷的積累和創新,最重要的就是及時進行知識點的鞏固和復習,下面是小編為大家整理的有關五年級下冊數學知識點復習資料梳理,希望對你們有幫助!
五年級下冊數學知識點復習資料梳理1
第一單元知識點(四則運算)
1. 在沒有括號的算式里,如果只有加、減法或者只有乘除法,都要從左往右按順序計算。(這是同級運算)
2. 在沒有括號的算式里,有乘、除法和加減法,要先算乘除法,在算加減法。(這是兩級運算)
3. 算式里有括號,先算括號里面的,在算括號外面的。
4. 加法、減法、乘法和除法統稱四則運算。
5. 一個數加上0還得原數,一個數減去0也得原數。
6. 被減數等于減數,差是0。
7. 一個數和零相乘,仍得0。
8. 0除以一個非0的數,還得0。
9. 0不能作除數。
10. 在解決問題時,如果列綜合算式,必須用脫式計算。
11. 任何數除以0都得0。(×)因為0不能做除數。
五年級下冊數學知識點復習資料梳理2
第二單元知識點(觀察物體)
1. 如何確定物體所在的位置?
(1)明確方向。
(2)明確距離。
2.根據方向和距離來確定物體的位置。
3.在生活中一般先說物體所在方向離的近(夾角較小)的方位。
4.平面圖形的一般畫法:
(1)先確定某建筑物的方向。
(2)再確定角度。(測量角度時,哪個方位在前,0刻度線就對準誰。)
(3)最后確定距離。
5.兩個城市的位置具有相對性,方向相對,角度和距離不發生改變。例如:甲地在乙地的南偏東30度500米處,則乙地在甲地的北偏西30度500米處。
五年級下冊數學知識點復習資料梳理3
第三單元知識點(運算定律)
1.兩個數相加,兩個加數交換位置,和不變。這叫做加法交換律。
用字母表示為:a+b=b+a
2.三個數相加,先把前兩個數相加,再加第三個數,或者先把后兩個數相加,再加第一個數,和不變。這叫做加法結合律。用字母表示為:(a+b)+c=a+(b+c)
3.兩個數相乘,交換兩個因數的位置,積不變。這叫做乘法交換律。
用字母表示為:a×b=b×a
4.三個數相乘,先讓前兩個數相乘,再乘第三個數,或者先讓后兩個數相乘,再乘第一個數,積不變。這叫做乘法結合律。
用字母表示為:(a×b) ×c=a×(b×c)
5.兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。這叫做乘法分配律。用字母表示為:(a+b)×c=a×c+b×c
6. 類似于乘法分配律的簡便公式;
(a-b)×c=a×c-b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
7.從一個數里連續減去兩個數,等于從這個數里減去另兩個數的.和。這叫做減法的運算性質。用字母表示為:a-b-c=a-(b+c)
8.在一個帶有括號的算式中,括號前面是“+”,去掉括號后,括號里面的運算符號不發生改變。用字母表示為:a+(b+c)=a+b+c a+(b-c)=a+b-c
括號前面是“-”,去掉括號后,括號里面的運算符號發生了變化,“+”變“-”, “-”變“+”。 用字母表示為:a-(b+c)=a-b-c a-(b-c)=a-b+c
9.一個數連續除以兩個數,等于這個數除以另兩個數的積。這時除法的運算性質。用字母表示為:a÷b÷c=a÷(b×c)
10. 在一個帶有括號的算式中,括號前面是“×”,去掉括號后,括號里面的運算符號不發生改變。用字母表示為:
a×(b×c)=a×b×c a×(b÷c)=a×b÷c
括號前面是“÷”,去掉括號后,括號里面的運算符號發生了改變。用字母表示為:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
12. 另兩種簡便方法:
(1) 把一個因數改寫成兩個一位數相乘的形式。
(2) 把一個因數改寫成兩個數相除的形式,然后變成乘除混和運算。
五年級下冊數學知識點復習資料梳理4
位置與方向:
1、根據方向和距離確定或者繪制物體的具體地點。(比例尺、角的畫法和度量)
注意:1、比例尺2、正北方向3、角的畫法
2、位置間的相對性。會描述兩個物體間的相互位置關系。(觀測點的確定)
3、簡單路線圖的繪制。
4.地圖的三要素:圖例、方向、比例尺。
5.確定方向時:A、先確定觀測點
(1)從那里出發,那里就是觀測點。
(2)“在”字后面的為觀測點。
B站在觀測點來看方向。
例如:①東偏南25°(標25°的那個角就靠近東)
②西偏北35°(標35°的那個角就靠近西)
6.描述路線和繪路線圖時:只有一條線,所作的線是首尾相連的。
7.常用的八個方位:東、南、西、北、東南、東北、西南、西北。
五年級下冊數學知識點復習資料梳理5
運算定律及簡便運算:
一、加法運算定律:
1、加法交換律:兩個數相加,交換加數的位置,和不變。a+b=b+a
2、加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把后兩個數相加,再加上第一個數,和不變。(a+b)+c=a+(b+c)
加法的這兩個定律往往結合起來一起使用。
如:165+93+35=93+(165+35)依據是什么?
3、連減的性質:一個數連續減去兩個數,等于這個數減去那兩個數的和。a-b-c=a-(b+c)
二、乘法運算定律:
1、乘法交換律:兩個數相乘,交換因數的位置,積不變。a×b=b×a
2、乘法結合律:三個數相乘,可以先把前兩個數相乘,再乘以第三個數,也可以先把后兩個數相乘,再乘以第一個數,積不變。
( a×b )× c = a× (b×c )
乘法的這兩個定律往往結合起來一起使用。如:125×78×8的簡算
3、乘法分配律:兩個數的和與一個數相乘,可以先把這兩個數分別與這兩個數相乘,再把積相加。(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c
乘法分配律的應用:
①類型一:(a+b)×c (a-b)×c
= a×c+b×c = a×c-b×c
②類型二:a×c+b×c a×c-b×c
=(a+b)×c =(a-b)×c
③類型三:a×99+a a×b-a
= a×(99+1) = a×(b-1)
④類型四:a×99 a×102
= a×(100-1) = a×(100+2)
= a×100-a×1 = a×100+a×2
三、簡便計算
1.連加的簡便計算:
①使用加法結合律(把和是整十、整百、整千、的結合在一起)
②個位:1與9,2與8,3與7,4與6,5與5,結合。
③十位:0與9,1與8,2與7,3與6,4與5,結合。
2.連減的簡便計算:
①連續減去幾個數就等于減去這幾個數的和。如:106-26-74=106-(26+74)
②減去幾個數的和就等于連續減去這幾個數。如: 106-(26+74)=106-26-74
3.加減混合的簡便計算:
第一個數的位置不變,其余的加數、減數可以交換位置(可以先加,也可以先減)
例如:123+38-23=123-23+38 146-78+54=146+54-78
4.連乘的簡便計算:
使用乘法結合律:把常見的數結合在一起 25與4;125與8 ;125與80 等??匆?5就去找4,看見125就去找8;
5.連除的簡便計算:
①連續除以幾個數就等于除以這幾個數的.積。
②除以幾個數的積就等于連續除以這幾個數。
6.乘、除混合的簡便計算:
第一個數的位置不變,其余的因數、除數可以交換位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13
四、連除的性質:一個數連續除以兩個數,等于除以這兩個數的積。a÷b÷c = a÷(b×c)
1、常見乘法計算:
25×4=100 125×8=1000
2、加法交換律簡算例子:
50+98+50
=50+50+98
=100+98
=198
3、加法結合律簡算例子:
488+40+60
=488+(40+60)
=488+100
=588
4、乘法交換律簡算例子:
25×56×4
=100×56
=5600
5、乘法結合律簡算例子:
99×125×8
=25×4×56=99×(125×8)
=99×1000
=99000
6、含有加法交換律與結合律的簡便計算:
65+28+35+72
=(65+35)+(28+72)
=100+100
=200
7、含有乘法交換律與結合律的簡便計算:
25×125×4×8
=(25×4)×(125×8)
=100×1000
=100000
乘法分配律簡算例子:
1、分解式 2、合并式
25×(40+4) 135×12—135×2
=25×40+25×4 =135×(12—2)
=1000+100 =135×10
=1100 =1350
3、特殊1
99×256+256 45×102
=99×256+256×1
=256×(99+1)
=256×100
=25600
4、特殊2
45×102
=45×(100+2)
=45×100+45×2
=4500+90
=4590
5、特殊3
99×26
=(100—1)×26
=100×26—1×26
=2600—26
=2574
6、特殊4
35×8+35×6—4×35
=35×(8+6—4)
=35×10
=350
=2574
一、 連續減法簡便運算例子:
528—65—35 528—89—128 528—(150+128)
=528—(65+35) =528—128—89 =528—128—150
=528—100 =400—89 =400—150
=428 =311 =250
二、 連續除法簡便運算例子:
3200÷25÷4
=3200÷(25×4)
=3200÷100
=32
五年級下冊數學知識點復習資料梳理相關文章:
五年級下冊數學知識點復習資料梳理





上一篇:五年級下冊數學期末總復習資料
下一篇:小學五年級下冊數學復習資料